miércoles, 14 de abril de 2010

Teorema del límite central

El teorema del límite central o teorema central del límite indica que, en condiciones muy generales, la distribución de la suma de variables aleatorias tiende a una distribución normal (también llamada distribución gaussiana o curva de Gauss o campana de Gauss) cuando la cantidad de variables es muy grande.
Teorema: Sea X1, X2, ..., Xn una muestra aleatoria de una distribución con media μ y varianza σ2. Entonces, si n es suficientemente grande, la variable aleatoria

tiene aproximadamente una distribución normal con y .
También se cumple que si

tiene aproximadamente una distribución normal con y , cuanto más grande sea el valor de n, mejor será la aproximación.
El teorema del límite central garantiza una distribución normal cuando n es suficientemente grande.
Existen diferentes versiones del teorema, en función de las condiciones utilizadas para asegurar la convergencia. Una de las más simples establece que es suficiente que las variables que se suman sean independientes, idénticamente distribuidas, con valor esperado y varianza finitas.
La aproximación entre las dos distribuciones es, en general, mayor en el centro de las mismas que en sus extremos o colas, motivo por el cual se prefiere el nombre "teorema del límite central" ("central" califica al límite, más que al teorema).
Este teorema, perteneciente a la teoría de la probabilidad, encuentra aplicación en muchos campos relacionados, tales como la inferencia estadística o la teoría de renovación.
Veamos ahora un ejemplo:
Se lanza una moneda al aire 100 veces, si sale cara le damos el valor 1 y si sale cruz el valor 0. Cada lanzamiento es una variable independiente que se distribuye según el modelo de Bernouilli, con media 0,5 y varianza 0,25. Calcular la probabilidad de que en estos 100 lanzamientos salga más de 60 caras.
La variable suma de estas 100 variables independientes se distribuye, por tanto, según una distribución normal.
Media = 100 * 0,5 = 50
Varianza = 100 * 0,25 = 25
Para ver la probabilidad de que salgan más de 60 caras calculamos la variable normal tipificada equivalente:

(*) 5 es la raíz cuadrada de 25, o sea la desviación típica de esta distribución
Por lo tanto:
P (X > 60) = P (Y > 2,0) = 1- P (Y < 2,0) = 1 - 0,9772 = 0,0228
Es decir, la probabilidad de que al tirar 100 veces la moneda salga más de 60 caras es tan sólo del 2,28%.

No hay comentarios:

Publicar un comentario